Flowering plant composition shapes pathogen infection intensity and reproduction in bumble bee colonies

Lynn S. Adler, Nicholas A. Barber, Olivia M. Biller, and Rebecca E. Irwin

*Department of Biology, University of Massachusetts, Amherst, MA 01003; 1Ecology Program Area, Department of Biology, San Diego State University, San Diego, CA 92182; 2Department of Occupational Therapy, Thomas Jefferson University, Philadelphia, PA 19107; and 3Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695

Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved April 10, 2020 (received for review January 3, 2020)

Pathogens pose significant threats to pollinator health and food security. Pollinators can transmit diseases during foraging, but the consequences of plant species composition for infection is unknown. In agroecosystems, flowering strips or hedgerows are often used to augment pollinator habitat. We used canola as a focal crop in tents and manipulated flowering strip composition using plant species we had previously shown to result in higher or lower bee infection in short-term trials. We also manipulated initial colony infection to assess impacts on foraging behavior. Flowering strips using high-infection plant species nearly doubled bumble bee colony infection intensity compared to low-infection plant species, with intermediate infection in canola-only tents. Both infection treatment and flowering strips reduced visits to canola, but we saw no evidence that infection treatment shifted foraging preferences. Although high-infection flowering strips increased colony infection intensity, colony reproduction was improved with any flowering strips compared to canola alone. Effects of flowering strips on colony reproduction were explained by nectar availability, but effects of flowering strips on infection intensity were not. Thus, flowering strips benefited colony reproduction by adding floral resources, but certain plant species also come with a risk of increased pathogen infection intensity.

Significance

Pollinator decline affects food security, and pollinators are threatened by stressors including pathogens and insufficient food resources. Flowering strips are increasingly planted to increase pollinator abundance and diversity in agricultural settings, but flowers can also be disease transmission sites between pollinators. However, the effect of plant species composition on bee disease is unknown. We compared the effect of flowering strips with high- or low-infection plant species, or no flowering strips, on bee infection and reproduction in tents. Using high-infection flowering strips doubled bee infection intensity compared to low-infection flowering strips. However, bee reproduction was higher with any flowering strips. Thus, floral resources in flowering strips benefited bees, but certain plants also come with a risk of increased pathogen infection intensity.

Author contributions: L.S.A. and R.E.I. designed research; L.S.A. and O.M.B. performed research; N.A.B. analyzed data; and L.S.A. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. Published under the PNAS license.

Data deposition: All data and R scripts are deposited in Dryad (https://doi.org/10.5061/dryad.p2ng1f1n1).

Conflict of interest statement: The authors declare no competing interest.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2000074117/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.2000074117

PNAS Latest Articles | 1 of 7
to antimicrobial plant species as a form of self-medication (24), such plant species could play a larger role than predicted in disease dynamics. Alternatively, antimicrobial plant species may be less effective than expected if pathogens manipulate host behavior to avoid such plants (25). Sunflower (Helianthus annuus) has pollen that dramatically reduces C. bombi in B. impatiens (26, 27) and several plant species produce nectar with secondary compounds that can reduce pathogens (28–30), although such effects are not always consistent (31, 32). Only a few studies have assessed whether infection alters bee preference. In the field, infected B. impatiens and Bombus vagans had greater preference than uninfected bees for inflorescences with high nectar iridoid glycosides that can reduce pathogen infection (33).

However, a laboratory study with Bombus terrestris found only weak evidence that infected bees had increased preference for nectar nicotine compared to uninfected bees (28). Thus, there are conflicting results across species and compounds, and very few data overall to assess whether infection changes foraging preferences.

We assessed whether flowering strip species composition would affect pathogen infection intensity and bumble bee colony reproduction, and whether flowering strips and infection affected foraging behavior and pollination services. We designed our experiment in an agricultural context because flowering strips are increasingly used to promote pollinator abundance and diversity and enhance pollination services; in agriculture, although results are also relevant for natural ecosystems. We used tent mesocosms with canola as a focal crop and included three flowering strip treatments: canola only, high-infection strip, and low-infection strip, crossed with presence/absence of infection. This experiment assesses the consequences of specific plant communities for bee colony infection and reproduction, which is critical for making informed decisions about pollinator habitat management as well as understanding how plant community composition structures species interactions.

Results

Pathogen Infection. C. bombi cells replicated in hosts; in the infected treatment final raw counts averaged 39.7 ± 30.4 cells per 0.02 μL (mean ± SD; range 0 to 130), nearly 100 times more C. bombi cells than the initial inoculation (34).

We asked how flowering strips affected infection, including only bees in the infected treatment. There was no effect of flowering strips on the proportion of infected bees ($\chi^2 = 2.68$, $P = 0.262$), but flowering strips did affect mean infection intensity ($\chi^2 = 7.99$, $P = 0.008$), with higher mean infection in high-infection than low-infection tents. Mean infection intensity in canola tents was intermediate and not significantly different from either flowering strip treatment (Fig. 1). When nectar availability per tent was included as a covariate, the effect of flowering strip was still significant ($\chi^2 = 8.97$, $P = 0.011$) and the effect of nectar was not ($\chi^2 = 2.32$, $P = 0.128$; Fig. 1B), indicating that the effect of flowering strips on infection intensity was not mediated by nectar availability.

Microcolony Performance. Surviving adult workers, number of larvae produced, and mean egg weight were significantly affected by flowering strips (Table 1), with more adults and larvae and heavier eggs with high- and low-infection strips than canola alone (Fig. 2 A and C). Flowering strips did not significantly affect egg number or larval weight (Table 1). Infection had a nonsignificant tendency to reduce egg number; infection and the infection by flowering strip interaction did not affect any other performance measures (Table 1).

When nectar resources were included as a covariate (Table 1), they were positively related to number of surviving workers (Fig. 2B), larvae produced (Fig. 2D), number of eggs, and egg weight. The effect of flowering strips was still borderline significant for number of larvae but not other responses, and there was a borderline significant interaction between infection and flowering strips for larval weight (Table 1). No other effects were significant (Table 1).

Pollinator Foraging Behavior. Based on “quick observations” in which observers recorded the number of bees foraging on each plant species in a tent at that moment, both infection ($\chi^2 = 13.95$, $P < 0.001$) and flowering strips ($\chi^2 = 7.81$, $P = 0.02$) reduced the number of foragers on canola, with 38% fewer foragers in tents with infected bees and 30% fewer foragers in tents with flowering strips (Fig. 3A). There was no significant interaction between infection and flowering strips ($\chi^2 = 2.42$, $P = 0.13$). However, when considering foragers to all plants, the infection by flowering strip interaction was significant ($\chi^2 = 6.16$, $P = 0.046$); infection reduced foraging on all plants in the canola and low-infection strips, but not high-infection strips (Fig. 3B).

When considering bee behavior and movement between plants, we found that infection, flowering strips, and their interaction did not affect the number of plant switches per minute, the proportion of switches to a new plant species, or the number or proportion of visits to sunflower or thyme plants. Treatments also did not affect the proportion of low- vs. high-infection plants or flowers visited ($\chi^2 < 2.05$, $P > 0.15$ for all), except that bees visited a greater proportion of low-infection plants and flowers in low-infection than high-infection flowering strips (plants, $\chi^2 = 37.96$, $P < 0.0001$; flowers, $\chi^2 = 29.23$, $P < 0.0001$). Similarly, total visits and proportion of visits to sunflowers was greater in low-infection flowering strips where sunflowers were more numerous (total visits, $\chi^2 = 6.53$, $P = 0.011$; proportion of visits, $\chi^2 = 5.29$, $P = 0.022$).

Discussion

Although previous studies have shown that floral resources can increase bumble bee parasites in some contexts (17, 18), our study demonstrates that plant species composition shapes colony-level infection intensity in free-foraging bees. All infected bees began trials with equal pathogen exposure, but after 2 wk, bees in tents with high-infection plant species had nearly twice the infection intensity as bees in tents with low-infection species,
Table 1. Effect of C. bombi infection (yes/no), flowering strip treatment (high-infection wildflower, low-infection wildflower, or canola only) and their interaction (all fixed effects) on multiple measures of B. impatiens microcolony performance using generalized linear mixed models

<table>
<thead>
<tr>
<th></th>
<th>Surviving workers</th>
<th>Number of larvae</th>
<th>Larval weight</th>
<th>Number of eggs</th>
<th>Egg weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>χ^2</td>
<td>P</td>
<td>χ^2</td>
<td>P</td>
<td>χ^2</td>
</tr>
<tr>
<td>Infection</td>
<td>0.04</td>
<td>0.845</td>
<td>0.97</td>
<td>0.326</td>
<td>0.01</td>
</tr>
<tr>
<td>Treatment</td>
<td>15.77</td>
<td><0.001</td>
<td>13.70</td>
<td>0.001</td>
<td>0.84</td>
</tr>
<tr>
<td>Inf \times treat</td>
<td>3.32</td>
<td>0.190</td>
<td>2.22</td>
<td>0.33</td>
<td>5.03</td>
</tr>
</tbody>
</table>

With nectar as a covariate:

<table>
<thead>
<tr>
<th></th>
<th>Surviving workers</th>
<th>Number of larvae</th>
<th>Larval weight</th>
<th>Number of eggs</th>
<th>Egg weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nectar</td>
<td>15.39</td>
<td><0.001</td>
<td>5.84</td>
<td>0.016</td>
<td>0.95</td>
</tr>
<tr>
<td>Infection</td>
<td>0.28</td>
<td>0.600</td>
<td>1.81</td>
<td>0.178</td>
<td>0.01</td>
</tr>
<tr>
<td>Treatment</td>
<td>3.34</td>
<td>0.188</td>
<td>5.92</td>
<td>0.052</td>
<td>4.97</td>
</tr>
<tr>
<td>Inf \times treat</td>
<td>3.84</td>
<td>0.146</td>
<td>2.42</td>
<td>0.298</td>
<td>5.95</td>
</tr>
</tbody>
</table>

Surviving workers, number of larvae, and number of eggs were analyzed with Poisson distributions, and larval and egg weight with Gaussian distributions. The lower values show the same analysis with available nectar resources per tent included as a covariate. Bold indicates $P < 0.05$; italics indicate $P < 0.055$.

with intermediate infection in canola-only tents (Fig. 1A). These results are particularly important since flowering strips can provide important season-long nutrients in the boom-bust resource context of agricultural fields (35). Effects of floral composition on pathogen intensity could be due to changes in pathogen transmission at flowers (20) or impacts of floral resources on bee–pathogen dynamics in the microcolonies. For example, lack of food resources can suppress immune function (36) but also decrease pathogen counts (37–39). Secondary compounds in nectar can reduce bee pathogens, as can certain types of pollen (e.g., refs. 26 and 30). Importantly, although pollen diversity can improve honey bee health and pathogen tolerance (40), the effect of floral composition on infection intensity in our study was not due to species diversity since high- and low-infection flowering strips included the same plant species, just in reversed ratios. If plant diversity drove bee–pathogen interactions, we would expect the canola-only tents to have qualitatively different results than tents with flowering strips, but this was not the case (Fig. 1A). These results are important because they suggest that choice of plant species in flowering strips can influence bee disease dynamics, potentially increasing or decreasing pathogen infection intensity depending on the plant species chosen.

Even though the highest pathogen intensity occurred in high-infection tents, having enhanced floral resources from either flowering strip treatment improved bee performance compared to canola-only tents (Fig. 2). Because experimental bees were confined to tents, they were likely more food limited than wild bees and so these results should be interpreted cautiously. Nonetheless, it’s interesting that bees in high-infection and low-infection tents had similar survival and reproduction despite differences in infection intensity, suggesting that food resources play a more critical role than C. bombi infection for reproduction in this bee species under these experimental conditions. In support of this, we found little effect of infection treatment on most reproductive measures, with a marginal tendency for infection to reduce egg production. We note that other studies often find little impact of C. bombi infection on individual or colony performance in the laboratory when bees have abundant food resources, but more negative effects when bees are food stressed (41, 42). Furthermore, wild colonies of B. terrestris with higher C. bombi infection intensities were less likely to produce daughter queens (43), indicating reproductive consequences of infection under natural conditions. Experimental infection did reduce foraging in our study, consistent with a survey of wild foraging Bombus (44). Since bees were resource limited in our tents (demonstrated by greater microcolony reproduction with more nectar availability), it is surprising that reduced foraging due to infection treatment did not affect reproduction more strongly. Perhaps we would have seen more negative reproductive consequences if we had conducted longer trials. Alternatively, high pathogen intensity could signal bees to invest in reproduction prior to their demise. Longer-term studies are needed to determine impacts of plant species on bee reproductive fitness via changes in resources versus pathogen infection intensity.

Although flowering strips affected both pathogen infection intensity and bee reproduction, these effects were mediated by different mechanisms. The effect of flowering strips on bee reproduction was explained by estimated nectar availability in each tent (Fig. 2 B and D), while the effect of flowering strips on pathogen infection intensity remained after accounting for nectar availability (Fig. 1B). It is not surprising that reproduction correlated strongly with floral resources in bees confined to tents, although this may still reflect larger-scale patterns since resources increase bee abundance and diversity in widespread agricultural settings (4). However, this contrasts with pathogen infection intensity, which was not related to nectar resources. The original trials that designated plant species as “high-” or “low-” infection allowed single uninfeected workers to forage on an experimentally inoculated inflorescence for less than 20 min, and then assessed infection 1 wk later (20). It is remarkable that these categorizations of plant species based on brief foraging bouts still predicted infection intensities for microcolonies foraging in tents over a 2-wk period, when bees could forage for pollen, revisit flowers over several days, and interact with each other inside the colony.

Our previous trials identified surprisingly few floral traits associated with likelihood of acquiring disease other than number of reproductive structures (20). However, subsequent work suggests that floral architecture or surface compounds/trichomes, traits we did not measure in our original study, may play a role in disease dynamics, since the location of inoculum placement (inside flowers, outside flowers, on bracts) has variable effects on acquisition across plant species (23). We also did not measure floral volatiles, some of which reduce C. bombi viability (45). Nectar or pollen chemistry could also influence C. bombi infection intensity (26, 28, 29, 33, 45). Since the designation of high- and low-infection species accurately predicted colony infection intensity over 2 wk, this suggests that whatever traits influence short-term transmission dynamics also play important roles over longer time periods in determining infection intensities. Short-term dynamics can predict longer-term patterns in other systems; for example, greater exposure to bacterial wilt (3 h vs. 24 h) increased vector beetle infection likelihood after 5 d and persisted at 28 d, suggesting that interaction intensity affected both short- and long-term ability to acquire this pathogen (46).
A respect. For covariate; sample sizes are 28, 22, and 27 for low, canola, and high tents, respectively. For flowering strip treatment on bumble bee adult survival and different means in post hoc tests at 0.05. For

\[C bombi \] reduces learning and foraging efficiency in workers (51, 52), slows colony growth rates (53), and is associated with reduced likelihood of reproduction in wild colonies (43). Stressful conditions increase the mortality of infected workers (41) and reduce infected queen fitness (42). C. bombi infection is locally common; for example, C. bombi infected over 60% of B. impatiens in western Massachusetts (47).

We saw little effect of infection treatment or flowering strips on pollination service to canola, most likely because confining bees in tents resulted in excess pollen delivery to all plants. However, infection reduced the number of workers foraging at any given time, which could have more significant consequences for pollination on larger spatial scales, given that C. thridia can infect up to 80% of Bombus in western Massachusetts (47) and nearly 50% of B. terrestris workers in Switzerland and the United Kingdom (43, 44). Flowering strips also reduced the number of foragers on canola, but the high ratio of flowering strip to crop plants in our tents may overestimate the magnitude of this effect in the field. Designs that incorporate flowering strips or hedges rows on farms or in field trials would be more appropriate to assess effects on pollinator service; such studies often find benefits of flowering strips for pollination services (7-9).

In conclusion, we found that bee colony-level infection intensity nearly doubled with the addition of plant species known to increase pathogen acquisition, compared to low-infection plant species. However, bee colony reproduction was substantially improved with any flowering strips compared to canola alone. Variation in colony reproduction was explained by nectar resources, but infection intensity was not. Thus, both flowering strip treatments benefited colony reproduction by adding floral resources, but certain plant species may also increase pathogen infection intensity. This should be a consideration when selecting plant species for augmenting pollinator habitat.

Materials and Methods

Study System. B. impatiens (Apidae, the common eastern bumble bee) is one of the most prevalent bumble bee species in the eastern United States (e.g., refs. 47 and 48), a generalist pollinator, and available commercially. We used microcolonies of ~15 workers as our unit of replication; microcolonies have been used successfully to estimate colony performance as a function of diet (49).

C. bombi (Zoomastigophora:Trypanosomatidae) is a protozoan gut parasite that can be contracted at flowers via fecal-oral transmission (14, 50). C. bombi reduces learning and foraging efficiency in workers (51, 52), slows colony growth rates (53), and is associated with reduced likelihood of reproduction in wild colonies (43). Stressful conditions increase the mortality of infected workers (41) and reduce infected queen fitness (42). C. bombi infection is locally common; for example, C. bombi infected over 60% of B. impatiens in western Massachusetts (47).

Canola (Brassica rapa) cultivar O. Eclipse; Spectrum Crop Development, Ritzville, WA) is obligately outcrossed and has improved yield from insect pollinators (54, 55). Canola was grown on more than 1 million acres in the United States with a production value of $357 billion in 2011 (National Agricultural Statistics Service, US Department of Agriculture [USDA]), and so is a major foraging source for bees as well as a valuable US crop. Bombus exhibit natural foraging behaviors in tent enclosures, are common natural pollinators of canola (e.g., ref. 56), and have been successfully used to pollinate canola in greenhouse experiments previously (57). Thus, Bombus are both relevant and tractable to examine the effects of pathogens and flowering strips on pollination in canola.

We designated low- and high-infection plant species based on previous work in which we inoculated flowers of each species with a known quantity of C. bombi inoculum, allowed an uninfected bee to forage (typically less than 20 min), and then individually reared the bees for 1 wk and assessed pathogen cell counts (20). In most cases species were designated as low or high infection based on both the probability of a bee becoming infected and the severity of infection; mean C. bombi cell counts 1 wk after foraging (including zeros) were 9.0 to 13.1 cells/0.02 μL for low- and 18.9 to 36.2 cells/0.02 μL for high-infection plant species (20). High-infection species used in the current experiment were Antirrhinum majus (Plantaginaceae), Asclepias incarnata (Asclepiadaceae), Lobelia siphilitica (Campanulaceae), Lythrum salicaria (Lythraceae), Penstemon digitalis (Plantaginaceae), and Solidago altissima spp. altissima (Asteraceae). Low-infection species were Digitalis purpurea (Plantaginaceae), Helianthus annuus (Asteraceae), Linaria vulgaris (Plantaginaceae), and multiple varieties of Thymus (Lamiaceae). See SI Appendix for plant source and propagation details.

Experimental Design Summary. We manipulated C. bombi infection (yes/no) and flowering strips in a 2 × 3 factorial design using tents in the field at the University of Massachusetts Center for Agriculture (South Deerfield, MA, 42° 28.6′ N, 72° 34.8′ W). We used tents to constrain our experimental bees to only forage on their provided treatment plants, although we acknowledge that this likely resulted in more food limitation than free-foraging bees would experience. Our flowering strip treatments were canola only,
high-infection strip, and low-infection strip. These six treatment combinations were replicated three times per round (18 mesh-sided tents; 2.44 m × 2.44 m). Microcolonies were set up in a 3 × 3 block at the infection site for each infected treatment, and uninfected bees in the infected treatment may be because our inoculation did not successfully infect, or because bees recovered from their infection. The small number of infected bees in the "uninfected" treatment may be due to a few bees we observed escaping and returning to their tents. The number of living workers per microcolony was used as a measure of survival, scaled by the number of open sunflower or thyme flowers as covariates). We singled tent nested within block within round as a random effect. For responses with multiple values per tent (e.g., larvae per microcolony), we used block nested within round as a random effect. When Poisson or binomial data were overdispersed, we included an observation-level random effect (61, 62). We used likelihood ratio tests to evaluate fixed factors (the interaction term, then flowering strip, then infection treatment).

Pathogen infection. Effects of flowering strips on the proportion of bees infected and mean infection level (cells per 0.02 mL) were analyzed in the infected treatment only. To determine whether flowering strip effects on infection were due to resource availability, we reanalyzed responses including estimated nectar availability in each tent as a covariate. Nectar availability was estimated as the average number of open flowers per species in each tent (recorded during pollinator observations) multiplied by the previously determined mean nectar volume per flower for each species (20). We did not consider variation in sugar concentration since these values were unavailable for most species.

Microcolony performance. Microcolony performance was measured as number of eggs, larvae, and surviving workers (including number of workers at the start of the round as a covariate) and mean egg and larval weight. As with pathogen infection, we reanalyzed responses with estimated nectar availability in each tent as a covariate.

Pollinator foraging behavior. We analyzed quick observations of total bees on each plant species per tent and observations of individual bee behavior. We used the quick observations to ask whether infection and flowering strips affected mean foragers on canola and on all plants. We used our observations of individual foraging bouts to ask whether infection and flowering strips changed foraging behavior, including only tents with flowering strips. Responses included the total switches between plants (any species) per minute, the proportion of switches to a new plant species, the proportion of flowering strip species visited or flowers probed that were low vs. high infection, and the number and proportion of visits to sunflower and thyme plants (using the number of open sunflower or thyme flowers as covariates).

Ecology

Appendix

Flowering Strip Treatments

All tents contained bins of canola as the focal crop, with 20 plants per bin. We included 15 bins of canola per tent in the canola-only treatment, and 12 bins per tent in the flowering strip treatments to reflect that flowering strips could result in less space for a crop (see SI Appendix, Fig. S1 for physical layout). Flowering strips included 12 potted plants; there were typically three low-and-three high-infection species per round, but in some cases a single species was used twice (i.e., at double concentration) because of low availability (see Table S1). Tents with a low-infection flowering strip contained three individuals of each low-infection species and one of each high-infection species; tents with a high-infection flowering strip used three of each high-infection species and one of each low-infection species. Thus, high- and low-infection tents included the same plant species, just in reversed ratios. Manipulating the ratio of high-low-infection plant species, rather than species composition, allowed us to avoid confounding plant species composition and diversity with flowering strip treatments. High- and low-infection species varied between rounds based on phenology (SI Appendix, Table S1). See SI Appendix, Table S2 for plant sources and propagation methods.

Assessing Infection and Microcolony Performance

Microcolonies were created from commercial colonies of *B. impatiens* (Biobest, Leamington, ON, Canada) approximately 1 wk before deploying in field tents. All colonies were confirmed to be free of *C. bombi* before use by dissecting a subsample of workers. We used three colonies of origin per round. Each block in the field site contained microcolonies from the same colony of origin, so that the block factor includes genetic as well as spatial variation. Each microcolony was initiated with 11 to 17 workers, plus 2 to 9 pupal cells in the first two rounds. Only one chose this range of initial workers to be large enough to facilitate microcolony survival, but small enough to have sufficient floral resources in the tents. Microcolonies were randomly assigned to infected or uninfected treatments and inoculated with *C. bombi* at microcolony initiation. In infected colonies, each bee was fed 10 μL of inoculum with 6,000 *C. bombi* cells in 25% sucrose solution. This concentration is well within the ratio of high-low infection plant species, rather than species composition, allowed us to avoid confounding plant species composition and diversity with flowering strip treatments. High- and low-infection species varied between rounds based on phenology (SI Appendix, Table S1). See SI Appendix, Table S2 for plant sources and propagation methods.

Assessing Infection and Microcolony Performance

Microcolonies were created from commercial colonies of *B. impatiens* (Biobest, Leamington, ON, Canada) approximately 1 wk before deploying in field tents. All colonies were confirmed to be free of *C. bombi* before use by dissecting a subsample of workers. We used three colonies of origin per round. Each block in the field site contained microcolonies from the same colony of origin, so that the block factor includes genetic as well as spatial variation. Each microcolony was initiated with 11 to 17 workers, plus 2 to 9 pupal cells in the first two rounds. Only one chose this range of initial workers to be large enough to facilitate microcolony survival, but small enough to have sufficient floral resources in the tents. Microcolonies were randomly assigned to infected or uninfected treatments and inoculated with *C. bombi* at microcolony initiation. In infected colonies, each bee was fed 10 μL of inoculum with 6,000 *C. bombi* cells in 25% sucrose solution. This concentration is well within the ratio of high-low infection plant species, rather than species composition, allowed us to avoid confounding plant species composition and diversity with flowering strip treatments. High- and low-infection species varied between rounds based on phenology (SI Appendix, Table S1). See SI Appendix, Table S2 for plant sources and propagation methods.

Assessing Infection and Microcolony Performance

Microcolonies were created from commercial colonies of *B. impatiens* (Biobest, Leamington, ON, Canada) approximately 1 wk before deploying in field tents. All colonies were confirmed to be free of *C. bombi* before use by dissecting a subsample of workers. We used three colonies of origin per round. Each block in the field site contained microcolonies from the same colony of origin, so that the block factor includes genetic as well as spatial variation. Each microcolony was initiated with 11 to 17 workers, plus 2 to 9 pupal cells in the first two rounds. Only one chose this range of initial workers to be large enough to facilitate microcolony survival, but small enough to have sufficient floral resources in the tents. Microcolonies were randomly assigned to infected or uninfected treatments and inoculated with *C. bombi* at microcolony initiation. In infected colonies, each bee was fed 10 μL of inoculum with 6,000 *C. bombi* cells in 25% sucrose solution. This concentration is well within the ratio of high-low infection plant species, rather than species composition, allowed us to avoid confounding plant species composition and diversity with flowering strip treatments. High- and low-infection species varied between rounds based on phenology (SI Appendix, Table S1). See SI Appendix, Table S2 for plant sources and propagation methods.

Assessing Infection and Microcolony Performance

Microcolonies were created from commercial colonies of *B. impatiens* (Biobest, Leamington, ON, Canada) approximately 1 wk before deploying in field tents. All colonies were confirmed to be free of *C. bombi* before use by dissecting a subsample of workers. We used three colonies of origin per round. Each block in the field site contained microcolonies from the same colony of origin, so that the block factor includes genetic as well as spatial variation. Each microcolony was initiated with 11 to 17 workers, plus 2 to 9 pupal cells in the first two rounds. Only one chose this range of initial workers to be large enough to facilitate microcolony survival, but small enough to have sufficient floral resources in the tents. Microcolonies were randomly assigned to infected or uninfected treatments and inoculated with *C. bombi* at microcolony initiation. In infected colonies, each bee was fed 10 μL of inoculum with 6,000 *C. bombi* cells in 25% sucrose solution. This concentration is well within the ratio of high-low infection plant species, rather than species composition, allowed us to avoid confounding plant species composition and diversity with flowering strip treatments. High- and low-infection species varied between rounds based on phenology (SI Appendix, Table S1). See SI Appendix, Table S2 for plant sources and propagation methods.
out sunflower, since its pollen dramatically reduced C. bombi infection (26), and thyme, since thymol reduced C. bombi at natural nectar concentrations in vivo (30) and in vitro (45).

Data Availability. All data and R scripts are deposited in Dryad (https://doi.org/10.5061/dryad.p2ngf1vn1) (34).

ACKNOWLEDGMENTS. We thank Biobest for donating bumble bee colonies; S. J. Giacomin for managing laboratory components; P. Anderson, D. Delaney, J. Giacomin, A. Hachey, R. Holley, E. Mann, S. Mitchell, Y. Moon, R. Papapietro, R. Pasquaile, C. Shuja, and M. Stypulkoski for research assistance; N. Woodman and the University of Massachusetts Center for Agriculture for field site support; and three anonymous reviewers plus R. Maïf, J. Van Wyk, and other members of the L.S.A. laboratory for providing feedback on the manuscript. Research was funded by USDA/Agriculture and Food Research Initiative 2013-02536, NIH Grant 1 R01 GM22062-01, National Science Foundation Division of Environmental Biology DEB100996 (all L.S.A. and R.E.I.) and USDA/Cooperative State Research, Education, and Extension Service Grant MA5000411 (L.S.A.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.

